

Radiometric System Model for RBI

Anum Barki

Deputy Project Scientist for Radiometric Modeling

Kory Priestley
Project Scientist

www.nasa.gov

October 18, 2016

anum.r.barki@NASA.gov

Radiometric System Model Objectives

Develop a tool to enhance the interpretation of Instrument performance

Model the end-to-end science signal chain: Photons in to bits/counts out.

- Simulate the science data stream output when viewing calibration targets, earth scenes or any user-defined radiance.
- Support and validate engineering design and fabrication phase
- Quantify the effects of various anomalous sources of energy: stray light
- Perform analyses as required to evaluate and quantify the impact to science data due to other uncertainties.

Current RBI Project Phase

Engineering-Led Effort

Phase C: Final Design and Fabrication

 Demonstrate that the detailed system design meets requirements

Science-Led Effort

Develop the end-to-end model of the science signal chain: Photons in to bits/counts out.

- To be correlated to the Engineering Development Unit at the end of Phase C
- To be correlated to the Flight Unit at the end of Phase
- Support Mission Operations and Data Analysis in Phase E

Model Development Schedule

Build 1

Individual modules complete Monochromatic sources Single telescope (Total) Single sided GUI

Build 2

Broadband sources All Three telescopes Double sided

Model Development Schedule

Build 1

Individual modules complete Monochromatic sources Single telescope (Total) Single sided GUI

Build 2

Broadband sources All Three telescopes Double sided

Typical Instrument Analytical Model

Numerical Modeling Tools

- Monte-Carlo Ray-Trace Model
 - Computes the distribution of radiation within the instrument.
 - Spectral characterization of the optical and radiative performance of the entire instrument.
 - Provides the necessary "Boundary" conditions for the thermal models.
- Finite-Element Thermal Diffusion Model
 - Three-Dimensional characterization of the transient thermal diffusion in instrument components
- Finite-Difference Electro-thermal Model
 - Three-Dimensional characterization of the transient thermal diffusion in the detectors
 - Two-Dimensional characterization of the transient electrical diffusion in the thermocouples.
- Electrical Circuit Model
 - Computation of the electronic Response of the electrical feedback control system.

Previous Earth Radiation Budget (ERB) programs, such as CERES, have used these modeling tools for End-to-End characterization of the instrument

Correlation of Model to Hardware

- During System Level TVAC testing we will simulate the test execution with the model to complete an end-to-end correlation.
- If the Model and Hardware do not converge, we will perturb model parameters within their allowed tolerances to bring the model and hardware into agreement.

RBI Instrument End-to-End Model

Sources

- On-board Calibration sources are currently being modeled with MATLAB and/or Zemax Optics Studio
 - Infrared Calibration Target (ICT) Using MCRT techniques to compute the
 distribution of radiation within the ICT
 and as distributed on the telescope
 aperture.
 - Visible Calibration Target (VCT) -Similar techniques as the ICT
 - Solar Calibration Target (SCT) –
 Similar techniques as the ICT
 - Parameters such as optical prescription, viewing geometry, and paint specs are also being modeled.
 - Thermal analysis are being conducted in parallel.

to

Infrared Calibration Target Module

- ICT positioned to be viewed by both Total and Longwave Detectors
- ICT spatial and spectral output distribution imaged on the Focal Plane
- Thermal gradients within the ICT can produce ambiguous radiance
- Degradation of Z-302 will reduce effective emissivity over lifetime

Visible Calibration Target Module

- VCT positioned to be viewed by both Total and Shortwave Detectors
- VCT spatial and spectral output distribution imaged on the Focal Plane
- Thermal gradients within the VCT can produce IR background signal on the Total Channel

Solar Calibration Target Module

- SCT positioned to be viewed by both Total and Shortwave Detectors
- SCT spatial and spectral reflected radiance distribution imaged on the Focal Plane
- Thermal gradients across the SCT can produce IR background signal on the Total Channel

Optical Module

Optical Module

Radiation Budget Instrument

Optical Module

Focal Plane Model

Focal Plane Module

Focal Plane Module is a Thermal Detector that compares heat sink temperature with a membrane coupled to the radiation from the telescope

Passive Thermopile Detector
AD8629 single op-amp analog gain circuit
Customer supplied PRT for heat sink
monitoring

Signal Conditioning Electronics

Signal Conditioning Electronics

PSF Simulation

Graphical User Interface

Current Status and Future Work

- Currently in Build 1 phase: All subassemblies are being developed in their respective platforms.
 - ✓ Design changes are being incorporated as engineering drawings become available
- Electronics model is nearly complete to the current design specifications
- Scene generator between calibration targets and telescope currently being defined and developed
- On-going thermal analysis supports and validates contractor's derived requirements for individual subsystems (ICT, telescope)
- Short-term studies that can influence instrument design are also being carried out in parallel
 - ✓ Stray light studies
 - ✓ SW filter heating and re-emission
 - ✓ Temperature variations in telescope baffles due to material change
 - ✓ Uncertainties in radiance arriving at telescope aperture due to:
 - View angles for all three telescopes to the sources.
 - Uncertainties in knowledge of the system parameters- ICT temp, paint absorptivities, BRDFs, etc.

Questions?

